

Protein stability and storage

TR0043.1

Introduction

Proteins comprise an extremely heterogeneous class of biological macromolecules. They are often unstable when not in their native environments, which can vary considerably among cell compartments and extracellular fluids. If certain buffer conditions are not maintained, extracted proteins may not function properly or remain soluble. Proteins can lose activity as a result of proteolysis, aggregation and suboptimal buffer conditions.

Purified proteins often need to be stored for an extended period of time while retaining their original structural integrity and/or activity. The extent of storage 'shelf life' can vary from a few days to more than a year and is dependent on the nature of the protein and the storage conditions used. Optimal conditions for storage are distinctive to each protein; nevertheless, it is possible to suggest some general guidelines for protein storage and stability.

Common conditions for protein storage are summarized and compared in Table 1. Generally, there are tradeoffs associated with each method. For example, proteins stored in solution at 4°C can be dispensed conveniently as needed but require more diligence to prevent microbial or proteolytic degradation; such proteins may not be stable for more than a few days or weeks. By contrast, lyophilization allows for long-term storage of protein with very little threat of degradation, but the protein must be reconstituted before use and may be damaged by the lyophilization process.

Table 1. Comparison of Protein Storage Conditions

	Storage Condition			
Characteristic	Solution at 4°C	Solution in 25-50% glycerol or ethylene glycol at -20°C	Frozen at -20° to -80°C or in liquid nitrogen	Lyophilized (usually also frozen)
Typical shelf life	1 month	1 year	Years	Years
Requires sterile conditions or addition of antibacterial agent	Yes	Usually	No	No
Number of times a sample may be removed for use	Many	Many	Once; repeated freeze- thaw cycles generally degrade proteins	Once; it is impractical to lyophilize a sample multiple times

General Considerations for Protein Storage

Temperature:

Generally, proteins are best stored at $\leq 4^{\circ}$ C in clean, autoclaved glassware or polypropylene tubes. Storage at room temperature often leads to protein degradation and/or inactivity, commonly as a result of microbial growth. For short term storage (1 day to a few weeks), many proteins may be stored in simple buffers at 4° C. Protein Stabilizing Cocktail (Product No. 89806) is a 4X solution that helps to extend the shelf-life of most proteins for storage at 4° C or -20°C compared to storage in simple phosphate or Tris buffers.

For long term storage for 1 month to 1 year, some researchers choose to bead single-use aliquots of the protein in liquid nitrogen for storage in clean plastic containers under liquid nitrogen. This method involves adding the protein solution dropwise (about $100 \,\mu l$ each) into a pool of liquid nitrogen, then collecting the drop-sized frozen beads and storing them in cryovials under liquid nitrogen.

Frozen at -20°C or -80°C is the more common form of cold protein storage. Because freeze-thaw cycles decrease protein stability, samples for frozen storage are best dispensed and prepared in single-use aliquots so that, once thawed, the protein solution will not have to be refrozen. Alternatively, addition of 50% glycerol or ethylene glycol (see Additives section below) will prevent solutions from freezing at -20°C, enabling repeated use from a single stock without warming (i.e., thawing).

Protein Concentration:

Dilute protein solutions (< 1 mg/ml) are more prone to inactivation and loss as a result of low-level binding to the storage vessel. Therefore, it is common practice to add "carrier" or "filler" protein, such as purified bovine serum albumin (BSA) to 1-5 mg/ml (0.1-0.5%), to dilute protein solutions to protect against such degradation and loss.

Additives:

Many compounds may be added to protein solutions to lengthen shelf life:

- Protein Stabilizing Cocktail (Product No. 89806) is a 4X solution that helps to extend the shelf-life of most proteins for storage at 4°C or -20°C.
- Cryoprotectants such as glycerol or ethylene glycol to a final concentration of 25-50% help to stabilize proteins by preventing the formation of ice crystals at -20°C that destroy protein structure.
- Protease inhibitors prevent proteolytic cleavage of proteins (Table 2).
- Anti-microbial agents such as sodium azide (NaN₃) at a final concentration of 0.02-0.05% (w/v) or thimerosal at a final concentration of 0.01 % (w/v) inhibit microbial growth.
- Metal chelators such as EDTA at a final concentration of 1-5 mM avoid metal-induced oxidation of –SH groups and helps to maintain the protein in a reduced state.
- Reducing agents such a dithiothreitol (DTT) and 2-mercaptoethanol (2-ME) at final concentrations of 1-5 mM also help to maintain the protein in the reduced state by preventing oxidation of cysteines.

Table 2. Common Protease Inhibitors

Protease Inhibitor	Target Protease	Working Concentration
PMSF (Phenylmethylsulfonyl fluoride)	Serine proteases	0.1-1 mM
Benzamidine	Serine proteases	1 mM
Pepstatin A	Acid proteases	1 μg/ml
Leupeptin	Thiol proteases	1 μg/ml
Aprotinin	Serine proteases	5 μg/ml
Antipain	Thiol proteases	1 μg/ml
EDTA and EGTA	Metalloproteases	0.1-1 mM
1	-	, 0

Storage Conditions for Antibodies and Antibody-Enzyme Conjugates

Antibody stock solutions (e.g., 1 mg/ml) often may be stored at 4°C for days to weeks without significant loss in activity. For increased stability, glycerol or ethylene glycol may be added to a final concentration of 50% and the antibody stored at -20°C. Alternatively, the antibody solution may be stored in small working aliquots at -20°C to avoid repeated freeze-thaw cycles. Anti-microbial agents such as sodium azide or thimerosal may be added to avoid microbial growth.

Generally, antibody conjugates are best stored at -20°C with glycerol or ethylene glycol added at a final concentration of 50%. Although some enzyme conjugates may be stored at -20°C without cryoprotectant, frozen stocks must be as single use aliquots to prevent repeated freeze-thaw cycles; alkaline phosphatase conjugates are particularly sensitive to freezing. Conjugates typically maintain good activity for 1-2 years if stored at -20°C with glycerol or ethylene glycol. However, contaminants in cryoprotectants may affect enzyme activity, and few researchers take steps to ensure the purity of the cryoprotectant used. Pierce offers Ethylene Glycol (Product No. 29810) that is suitable for enzyme storage because impurities have been removed during the manufacturing process. Ethylene glycol does not support microbial growth, making it preferable to glycerol.

Pierce also offers SuperFreezeTM (Product No. 31503) and GuardianTM (Product No. 37548) Products, which are multi-component cryoprotectants that provide buffered anti-freeze conditions for the storage of horseradish peroxidase (HRP) conjugates. SuperFreezeTM Peroxidase Conjugate Stabilizer allows freezer storage of peroxidase conjugates, substituting for glycerol or ethylene glycol and ensuring stable liquid storage at -20°C. GuardianTM Peroxidase Conjugate Stabilizer/Diluent allows room temperature or 4°C storage of peroxidase conjugates in diluted form (as low as 10 ng/ml). Working dilutions for ELISA or Western blotting be prepared and stored up to 18 months at 4°C.

Related Pierce Products

89806	Protein Stabilizing Cocktail (4X), 10 ml
29810	Ethylene Glycol (50% aqueous solution), 200 ml
31503	SuperFreeze™ Peroxidase Conjugate Stabilizer, 25 ml
37548	Guardian Peroxidase Conjugate Stabilizer/Diluent, 200 ml
37552	Guardian Peroxidase Conjugate Stabilizer/Diluent, 1 liter
78410	Halt™ Protease Inhibitor Cocktail kit with EDTA, 2 ml
78415	Halt™ Protease Inhibitor Cocktail EDTA free, 1 ml
36978	PMSF (Phenylmethylsulfonyl fluoride), 5 mg

©Pierce Biotechnology, Inc., 9/2005. Printed in the USA.